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SUMMARY

Innovative numerical techniques for two dimensional elastic and elastic-plastic multiple

crack problems are presented using micromechanics concepts and complex variables. The

simplicity and the accuracy of the proposed method will enable us to carry out the

multiple-site fatigue crack propagation analyses for airplane fuselage by incorporating such

features as the curvilinear crack path, plastic deformation, coalescence of cracks, etc.

INTRODUCTION

Numerical techniques for plane elastic and elastic-plastic multiple crack problems are

presented with the help of micromechanics concepts and complex variables. An

amalgamation of the method of singula_ integral equations for cracks, the boundary

element method, and the plastic source method for plastic deformation is achieved in a

natural manner with the help of micromechanics tools such as dislocations, point forces,

and their dipoles. The formulation is carried out in terms of complex variables to facilitate

closed form integration of the boundary and the crack face (singular) integrals and the

planar distribution of the plastic sources. For elastic problems, the crack opening

displacements are modeled by the continuous distribution of dislocation dipoles such that,

with the help of Chebyshev polynomials, the crack-face opening displacements and the

crack-tip stress singularity contributions are automatically built in. There is no need to

extrapolate the results to get the stress intensity factor. Further, by using complex

variables, the crack-face singular integrals are evaluated in closed form. The approach is

extended to elastic-plastic multiple crack problems such that the elastic singularity is

canceled by the plastic deformation at the crack-tip. The techniques presented in this paper

will serve as the key components in the planned FAA computer software for the residual

life analysis of aging aircraft under widespread fatigue damage that takes into account such

features as the curvilinear crack path, plastic deformation, coalescence of cracks, etc.

MICROMECHANICS TOOLS IN COMPLEX VARIABLES

Muskhelishvili's (ref. 1) complex variable formalism for plane isotropic elasticity uses

two analytic functions or complex potential functions, ¢(z) and ¢(2),of a complex variable
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z = x + iy to express the solution. The displacement, stress, and strain components are

given by

2t.,(--) = ,_¢(z)- z¢(z),- ¢(z),
and

_xx "3I- oryy
- ¢(_), + ¢(_)',

2

(Tyy -- (Txx + i_ = _¢(_)" + ¢(z)',
2

where tt is the shear modulus, _ is given by _ = 3 - 4v in plane strain and

= (3 - v)/(1 + v) in plane stress in terms of Poisson's ratio v. A prime attached to the

analytic functions of z indicates differentiation with respect to z and a bar indicates the

complex conjugate.

(i)

(2)

Fundamental Solutions

Consider a point force with the magnitude f = f_ + ify (per unit thickness) and an edge

dislocation with the Burgers vector b = b_ + ibu, independently located at _ in the infinite

isotropic medium. Their solutions are given in the same form (ref. 2)

-7 log(z - _),

-k_log(z - _) + _z--_' (3)

where k = -_, 7 = f/27c(_ + 1) for the point force and k = 1, 7 = i#b/7_(_ + 1) for the

dislocation. The corresponding dipole solutions (i.e., the force and the dislocation dipoles)

are given by

¢(_)(z;_) = -_ d {log(z - _)},

= -k_d{log(z-0} +_d_ _--_-_" -_(_)(z;_)
( jz--_

(4)

where d(.--) = 0-_(""-)d_ + _(...)d_ is the total differentiation operator.

Continuous Distributions of the Singularities
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The continuous distribution of point forces over an arc L (with arc parameter s) is

given, from equation (3), by

¢(,)(z) = - f_ r(,)log(z - _)d_,

(5)
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with r(s) --- t/27e(_ + 1), where t t_ + it_ is the traction. The continuous distribution of

dislocation dipoles is given, from Equation (4), by

4,(_)(z) = - f_ 7(_)d {log(z ()},

} (6)

with -),(s) = i#b/rc(x_ + 1), where b = b_ + ibu is the dislocation.

BOUNDARY ELEMENT METHOD IN COMPLEX VARIABLES

Consider a body R with its boundary OR subject to the traction T = T_ + iTu and the

displacement U = U_ + iUu. The displacement field in this body is obtained by assuming

that the region R is embedded in an infinite medium and OR, which is simply a line

marked out in the infinite domain, is covered by a continuous distribution of point forces

with density T and by a continuous distribution of dislocation dipoles with the Burgers

vector U. This is the physical interpretation of Somigliana's identity (ref. 3). We discretize

and approximate the original boundary by a piecewise straight line, L M= Y']_j=l Lj. The j-th
boundary element Lj -= _j_j+l (j -= 1, 2,..., M) has the slope Cj. The boundary traction

and the displacement are approximated by constant interpolation functions over an

element. Let Tj and Uj be the traction and the displacement of the element, then the

potential functions in (5) and (6) are integrated analytically with the result

¢_S)(z) = r_)/j(z),

(s) =-F_ T) e-21¢,fj(z)} F_ T) •Cj (z) {gj(z) + -- _e-2'¢,f_(z),

¢_d)(z) = -_}%_(z), cJd)(z) =,}_)_(z)- _}%_(z),

where

fj(z) = {(z- f)log_(z- f) + f} <_+' <'+'_, , gj(z) = _logj(z-- _)l_ s ,

m_(z) - (z -__)I_+'
_-+_

sj(z) = logj(z- _)l_, '

and F! T) = Tye-i¢,12_r(_ + 1), .),}or) = i#Uylre(x + 1), For ( on Ly, the branch line of the

logarithm logj(z - _) is given by a straight line connecting _, _3, and oo; thus the branch

cut of the logarithm differs fi'om element to element. The displacement and the traction

contributions of the two layers are obtained by substituting these potential functions into

(1) and (2). However, it is necessary to separate the real and imaginary parts of the

displacement and the traction before establishing the boundary equations. The

displacement boundary equations and the traction boundary equations are derived

following the standard procedure of the BEM.
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CRACK SOURCE METHOD

Define the Cauchy-type integrals

1 f V_ -- x_Um-,(x)dx
T(m)(z) =-;_-, x : z (m > 0),

U(m_X)(z ) = l ff. Tm(x)dx (m > 0), (7),/f - x - z) -

ove: the interval -1 _< x < +1, where Tin(x) and U__,(x) are the Chebyshev polynomials

of the first and second kind and z - x + iy is a complex variable. The integrals in (7) can

be evaluated analytically with the result

T<m)(z) = (z- _)'_ (m :> 0),

= (z- m (m > 0).
_/_-1

(8)

Single Crack in the Infinite Body

A dislocation dipole over an infinitesimal segment d_ gives rise to a displacement

discontinuity. We identify the displacement discontinuity as the crack opening

displacement and call the dislocation dipole as the crack source. Further, the continuous

distribution of the crack sources over an arc is called the crack element. Consider a straight

center crack of length 2a subject to a self-equilibrated traction

. (9)

over its upper (+) and lower (-) surfaces. Select the local coordinate system xy with the

coordinate origin at the center of the crack and the x-axis along the crack and introduce the

non dimensional coordinates X = x/a and Z = z/a, where z = x + iy is a complex variable.

The density function of the crack element is given by "_(X) = 7(x) = i#6/7r(_ + 1) in terms

of the crack opening displacement 5 = 5_ + iSy. If we interpolate the density function by

P

i# x/1- X 2 _ 5(m)u___(X),
'_(X)--_ 7r(_ -_ 1) m=l

then the complex potentiM functions, (4), for the crack element are integrated analytically,

with the help of (8), with the result

P

¢(_)(Z) = _r _ A(m)T(m)(Z),
m----1

P

%b(d)(Z) = _ E { "_-_T(m)(z) --mA(m)zy(m-i)(z)} "
m=l
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The displacement and the traction contributions of the crack element can be evaluated by

(1) and (2). Of interest is the traction

2p P

(t_ + its)_ (X) = + (_ + 1)a _ m6(_)U_-'(X) (Ixl -< 1),
m-----I

(10)

on the upper and the lower faces of the crack and the stress intensity factor

K(4-1) = KI(4-1) + iIfH(4-1) = 2P------_i_f_mfi II¢ q- I (4-1)'_+lm//('n)"

The components 6(m) of the crack opening displacement are determined from Equation (10)

and the applied traction (9) by collocation.

Multiple Cracks in the Infinite Body

Consider the problem of N multiple straight cracks, Lj ( j = 1,..., N ), in the infinite

body; the individual crack surface is loaded according to (9). First we formulate each crack

in the respective local coordinate system and then assemble the contributions from all the

cracks in the global coordinate system. The total traction t(k) + = {t(_k) +, t(uk)+}T on the

upper surface of the crack Lk is given in the form

t(k)+ __, "" (k.i) v (.i) ,
j=l _ m=l

o.(m)
where "*(kj) is a coefficient matrix and x(m) sx(m) "q(m)lT•.(j) =t._(j)x,_.(j)uj (j=l,...,N;m=l,...,p(j))
are the unknown crack opening displacement coefficients, which will be determined, from

Equations (11) and (9), by collocation.

Effect of the Finite Boundary

We now consider multiple center cracks in a finite body R whose boundary OR is

subject to the traction T = {T,, Ty} T and displacement U = {U,, Uy} T and each crack

surface is loaded according to (9). The total traction on the upper surface of crack Lk is

given in the form

t(k)+ = _ _ _.(m)_f(m) {G_(k)T_ ,(kj) (s) -k _ - #H*(k)U_} (12)
j=l m=l n=l

where the first term in the right hand side comes from (11) and the second and the third

terms come from the traction BEM with constant interpolation functions. The quantities

U,, and T,, are the boundary displacement and the traction vectors and G *(k), H *(k) are
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coefficient matrices. The total displacement on the non-crack boundary OR is given in :the
form

2Vk = j--1_ tin--1 __(J) "(i) _ + ,_=,_ (1GnT_p --H,_U_ , (13)

where ..r_r("_)(j),Gn, and Hn are coefficient matrices. The solution is obtained by setting up

traction equations on the upper surface of each crack fl'om Equations (12) and (9) and

displacement boundary equations on OR from Equation (13) and the boundary condition
on OR.

Numerical Results

A single center crack in a plate in uniaxial tension was analyzed by the present method

using one Chebyshev polynomial. The same problem, with identical mesh, was analyzed by
the crack Green's function BEM, which uses the Green's function that satisfies the traction

free crack surface boundary condition automatically. The stress intensity factor results

agreed up to seven significant digits. Figures 1, 2, and 3 show two collinear cracks, two

parallel cracks, and three parallel cracks, respectively, in the infinite body. The numerical

results have been obtained for a large plate, compared to the cracks, using seven

Chebyshev polynomials for each crack in each case. Comparison of the numerical results

and the results from the stress intensity handbook (ref. 4) is listed in Tables 1, 2, and 3.

PLASTIC SOURCE METHIOD

P the stress-strain relations for isotropic materialsIn the presence of the plastic strain eli

in two-dimensions are given by (ref. 2)

and
1

_____ -- g_B,

where _Z is the total strain, e*_ is the fictitious in-plane plastic strain, called the plane
plastic strain, defined by

= / +

(

The elastic moduli A* and u* are defined by

(plane strain)

(plane stress)
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in terms of Lamd constants, A and g, and Poisson's ratio u. The non-zero out of plane

components are given by

a33 = uo'.,_ - Eel3 (plane strain),
1 u

_33 -- 2g I -4- V aT"y -t- e_3 (plane stress),

where E is the Young's modulus.

Plastic Element

Consider a region D of plastic deformation where the plastic strain components e_i , e_2 ,

e_2 , and eP3 = -eP.y are prescribed. In the numerical implementation the plastic region is

discretized into a collection of plastic elements in each of which the plastic strain

distribution is approximated by an interpolation function. We use the constant

interpolation in this paper so that the problem can be treated as Eshelby's (ref. 5)

stress-free transformation problem with constant transformation strMn given by the plane

plastic strain e* 0. Then the displacement in the entire region is given by a continuous

distribution of point forces over the boundary OD of the plastic region; the magnitude of

the force over a segment d_ of the boundary is given by

where

. . 1 . . . . -
f = _7 (0-11 + 0-22) d_ -- _-7 (o'11 --022 -_- 200"12) d(,

0",,0 = 2#%0 + A e.,,..,6,_0

The solution is obtained by integrating the fundamental solution of the point force, (3)
with (14), over the boundary OD with the result

(14)

where

¢*(z) = - 7"log(z - ¢)d¢,

(15)

1

7" = 2--7(o-*-r*e-2i¢),

0-. _ 1 . # + A* .
2rr(1 + g) (0-_1 -_- 0"22) -- 71(1 -t-/g) (ell .of.(_2),

T* -- 1 * * 9" * # * *

271"(1 -t- N) (0"11 -- 0"22 -'{- _/'0"12) ----- W(1 + x) (Cll -- '£22 + 2ie_2),

and ¢ is the slope of the boundary OD.

Consider the polygonal plastic element of a constant plastic strain distribution bounded

by N-lines F N= _j=l PJ, where Fj = Cj_j+_ (J = 1,2,...,N) is the j-th edge extending
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from corners _j to (j+l with the slope _bj. The integrals in (15) are evaluated analytically
with the result

N

¢*(z) =
j=l

N

j=l

(16)

where

fj(z) --" [(Z -- _)1ogj(z -- _) -J- _Ji; -_I , gj(z) = [_logj(z -- _)J,j

and "),_"- _ (a* - r*e-21eJ). The branch cut for the logarithm logi(z - _) for ¢ located on
the line F i is specified as explained earlier for the BEM. The displacement and the stress

are obtained by substituting the potential functions in (16) into (1) and (2) following the

Eshelby's procedure of stress free transformation. This results in an additional term for the

stress inside the plastic element (ref. 2).

Numerical Solution Procedure

The solution procedure whereby the unknown plastic strain distribution is determined

was given by Denda and Lua (ref. 6) for standard elastoplastic problems. In order to use

the crack source method it is convenient to break the problem into the elastic and the

plastic solutions. The former is the elastic solution under the applied load and the latter

the solution of the plastic elements. The crack source method is used for the determination

of each solution, once for the elastic solution and several times, iteratively, for the plastic

solution. Note that each solution gives rise to a 1/v/_ stress singularity. A singularity

cancellation scheme, whereby the final solution is obtained by elimination of the total

stress intensity factor, is used as a part of the convergence criterion of the procedure. The

results will be reported elsewhere.
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Table 1. Two Collinear Cracks (FzA = KIA#r_ and FIB = KIB/ax/_-_)

2a/d FIA

(Handbook)

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.00031

FIA FIB

(Numerical) (Handbook)

1.0018

1.0012 1.0027

1.0046 1.0061

1.0102 1.0117

1.0179 1.0194

1.0280 1.0295

1.00032

1.1174 1.1187

F/B

(Numerical)

1.0018

1.0013 1.0028

1.0057 1.0071

1.0138 1.0153

1.0272 1.0287

1.0480 1.0495

1.4539

1.0410 1.0426 1.0804 1.0821

1.0579 1.0596 1.1333 1.1351

1.0811 1.0827 1.2289 1.2314

1.4639

Table 2. Two Parallel Cracks (Fz = Kilo'S)

2a/d

0.0

0.2

0.4

0.8

1.0

2.0

5.0

Fr Fz
(Handbook) (Numericai)

1.0000 1.0011

0.9855 0.9870

0.9508 0.9517

0.8727 0.8732

0.8319 0.8440

0.7569 0.7746

0.6962 0.7129
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Table 3. Three Parallel Cracks (FxA = KzA/,TvrF-d and FzB = IQB/crv/¥-d)

(Handbook digital values for FIB are not available.)

2a/d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIA _IA

(Handbook) (Numerical)

0.99500 0.99687

0.98198

0.96299

0.98379

0.96430

0.94010 0.94100

0.91535 0.91650

0.89080 0.89254

0.86851 0.87041

0.85052 0.85062

FIB FIB

(Handbook) (Numerical)
-- 0.99410

0.97306

0.94156

-- 0.90361

-- 0.86789

-- 0.82333

-- 0.78603

-- 0.75234

r
AL !B

,- 2a

d _!

_' 2a v

Figure 1: Two collinear cracks in the infinite body under uniaxial tension.
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Figure 2: Two parallel cracks in the infinite body under uniaxial tension.

g .-A

A -- i n i iI"ii Ii

L
r" 2a ..-,

d

d

Figure 3: Three parallel cracks in the infinite body under uniaxial tension.
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